Moscow, Russia

Physical chemistry of adsorption and catalysis

Table of contents

Physical chemistry of adsorption and catalysis at Российский университет дружбы народов

Language: English Studies in English
Subject area: physical science, environment
University website: www.rudn.ru
3 years

Definitions and quotes

Catalysis
Catalysis () is the increase in the rate of a chemical reaction due to the participation of an additional substance called a catalyst (), which is not consumed in the catalyzed reaction and can continue to act repeatedly. Often only tiny amounts of catalyst are required in principle.
Chemistry
Chemistry is the scientific discipline involved with compounds composed of atoms, i.e. elements, and molecules, i.e. combinations of atoms: their composition, structure, properties, behavior and the changes they undergo during a reaction with other compounds. Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.
Physical Chemistry
Physical chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibrium.
Chemistry
Like literature, philosophy is not distinguished from other subjects by a specific approach to a subject-matter independent of it. Chemistry deals with chemicals, biology with life and astronomy with very large, very distant objects. Philosophy can boast no such definite subject-matter.
David Wood (philosopher) (1990) Philosophy At The Limit. p. 69
Catalysis
Due to economic and ecological factors, catalytic processes in the pro duction of fine chemicals are gaining in importance, especially in the area of asymmetric catalysis (Collins et al. 1997; Breuer et al. 2004). Accordingly, the practicing chemist has three major options: transition metal catalysts (Jacobsen et al. 1999), organocatalysts (Berkessel and Gröger 2004) or enzymes (Drauz and Waldmann 2002; Liese et al. 2006). All of them have advantages and disadvantages, which means that a given type of catalysis cannot be expected to provide general so lutions to all problems of relevance in academic and industrial labora tories. Therefore, research in all three approaches needs to be intensified.
Manfred T. Reetz, "Controlling the Selectivity and Stability of Proteins by New Strategies in Directed Evolution: The Case of Organocatalytic Enzymes", in Organocatalysis (2008) edited by M.T. Reetz, B. List, S. Jaroch, H. Weinmann.
Chemistry
Modern warfare, we discovered, was to a far greater extent than ever before a conflict of chemists and manufacturers. Manpower, it is true, was indispensable, and generalship will always, whatever the conditions, have a vital part to play. But troops, however brave and well led, were powerless under modern conditions unless equipped with adequate and up-to-date artillery (with masses of explosive shell), machine-guns, aircraft and other supplies. Against enemy machine-gun posts and wire entanglements the most gallant and best-led men could only throw away their precious lives in successive waves of heroic martyrdom. Their costly sacrifice could avail nothing for the winning of victory.
David Lloyd George (1938) War Memoirs
EU-funded scientists developed novel tools to more accurately predict volcanic eruptions. The developed models should allow better decision making during volcanic crises.
Privacy Policy