Košice, Slovakia

Environmental Analytical Chemistry

Table of contents

Environmental Analytical Chemistry at Technical University of Košice

Language: English Studies in English
Subject area: physical science, environment
University website: www.tuke.sk

Definitions and quotes

Analytical Chemistry
Analytical chemistry studies and uses instruments and methods used to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.
Chemistry
Chemistry is the scientific discipline involved with compounds composed of atoms, i.e. elements, and molecules, i.e. combinations of atoms: their composition, structure, properties, behavior and the changes they undergo during a reaction with other compounds. Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.
Chemistry
Just think of the differences today. A young person gets interested in chemistry and is given a chemical set. But it doesn't contain potassium cyanide. It doesn't even contain copper sulfate or anything else interesting because all the interesting chemicals are considered dangerous substances. Therefore, these budding young chemists don't get a chance to do anything engrossing with their chemistry sets. As I look back, I think it is pretty remarkable that Mr. Ziegler, this friend of the family, would have so easily turned over one-third of an ounce of potassium cyanide to me, an eleven-year-old boy.
Linus Pauling In His Own Words (1995) by Barbara Marinacci, p. 29
Chemistry
We may, I believe, anticipate that the chemist of the future who is interested in the structure of proteins, nucleic acids, polysaccharides, and other complex substances with high molecular weight will come to rely upon a new structural chemistry, involving precise geometrical relationships among the atoms in the molecules and the rigorous application of the new structural principles, and that great progress will be made, through this technique, in the attack, by chemical methods, on the problems of biology and medicine.
Linus Pauling, Nobel Lecture (11 December 1954)
Chemistry
Chemists usually write about their chemical careers in terms of the different areas and the discrete projects in those areas on which they have worked. Essentially all my chemical investigations, however, are in only one area, and I tend to view my research not with respect to projects, but with respect to where I’ve been driven by two passions which I acquired in graduate school: I am passionate about the Periodic Table (and selenium, titanium and osmium are absolutely thrilling), and I am passionate about catalysis. What the ocean was to the child, the Periodic Table is to the chemist; new catalytic reactivity is, of course, my personal coelacanth.
K. Barry Sharpless, Nobel lecture, 2001
In June 1770, the explorer James Cook ran aground on the Great Barrier Reef in Australia and became the first European to experience the world's largest coral reef, today a paradise for scientists and holidaymakers alike. Last year, the James Cook research vessel set out to encounter unique and unexplored corals, this time in the deep ocean. Led by ERC grantee Dr Laura Robinson (University of Bristol, UK), the team on board crossed the equatorial Atlantic to take samples of deep-sea corals, reaching depths of thousands of meters. On the expedition, Dr Robinson collected samples that are shedding light on past climate changes and she will share her findings at TEDx Brussels.
Privacy Policy