Moscow, Russia

Quantum Gravity and Cosmology

Table of contents

Quantum Gravity and Cosmology at Moscow Institute of Physics and Technology (PhysTech)

Language: English Studies in English
Subject area: physical science, environment
University website: mipt.ru/english/
4 years

Definitions and quotes

Cosmology
Cosmology (from the Greek κόσμος, kosmos "world" and -λογία, -logia "study of") is the study of the origin, evolution, and eventual fate of the universe. Physical cosmology is the scientific study of the universe's origin, its large-scale structures and dynamics, and its ultimate fate, as well as the scientific laws that govern these areas.
Gravity
Gravity, or gravitation, is a natural phenomenon by which all things with mass are brought toward (or gravitate toward) one another, including objects ranging from electrons and atoms, to planets, stars, and galaxies. Since energy and mass are equivalent, all forms of energy (including photons and light) cause gravitation and are under the influence of it. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing, forming stars – and for the stars to group together into galaxies – so gravity is responsible for many of the large scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker on farther objects.
Quantum
In physics, a quantum (plural: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property may be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum.
Gravity
What it takes to produce a gravitational repulsion is a negative pressure. According to general relativity, it turns out... both pressures and energy densities can produce gravitational fields, unlike Newtonian physics, where it's only mass densities that produce gravitational fields.
Alan Guth, The Early Universe (2012) Lecture 1 ibid.
Gravity
So may the gravitating attraction of the earth be caused by the continual condensation of some other such like ethereal spirit, not of the main body of phlegmatic ether, but of something very thinly and subtilely diffused through it, perhaps of an unctuous or gummy, tenacious, and springy nature, and bearing much of the same relation to ether, which the vital aereal spirit, requisite for the conservation of flame and vital motions, does to air. For, if such an ethereal spirit may be condensed in fermenting or burning bodies, or otherwise coagulated in the pores of the earth and water, into some kind of humid active matter, for the continual uses of nature, adhering to the sides of those pores, after the manner that vapours condense on the sides of a vessel; the vast body of the earth, which may be every where to the very centre in perpetual working, may continually condense so much of this spirit, as to cause it from above to descend with great celerity for a supply; in which descent it may bear down with it the bodies it pervades, with force proportional to the superficies of all their parts it acts upon; nature making a circulation by the slow ascent of as much matter out of the bowels of the earth in an aereal form, which for a time constitutes the atmosphere; but being continually buoyed up by a new air, exhalations and vapours rising underneath, at length, (some part of the vapours which return in rain excepted,) vanishes again into the ethereal spaces, and there perhaps in time relents, and is attenuated into its first principle: for nature is a perpetual worker, generating fluids out of solids, and solids out of fluids, fixed things out of volatile, and volatile out of fixed, subtile out of gross, and gross out of subtile; some things to ascend, and make the upper terrestrial juices, rivers, and atmosphere; and by consequence others to descend for a requital to the former.
Isaac Newton, (1675) as quoted by Stephen Peter Rigaud, Appendix No. XX, Extract from Newton's Hypothesis on Light, Historical Essay on the First Publication of Sir Isaac Newton's Principia (1838) Note: from Thomas Birch, History of Royal Society of London, Vol. iii. (1757) pp. 249-251.
Gravity
According to Newton's law of gravity, every object in the universe attracts every other object... with a gravitational force...



F
=



m
M
G


R

2






{displaystyle F={frac {mMG}{R^{2}}}}

... almost as famous as



E
=
m

c

2




{displaystyle E=mc^{2}}

... On the left side is the force,



F


{displaystyle F}

, between two masses... On the right side, the bigger mass is



M


{displaystyle M}

and the smaller mass is



m


{displaystyle m}

. ...The last symbol...



G


{displaystyle G}

, is a numerical constant called Newton's constant. ...Ironically, Newton never knew the value of his own constant. ...



G


{displaystyle G}

was too small to measure until the end of the eighteenth century. ...Cavindish found that the force between a pair of one-kilogram masses separated by one meter is approximately 6.6 x 10-11 newtons. (The Newton is... about one-fifth of a pound.) ...Newton had one lucky break... the special mathematical properties of the inverse square law. ...[B]y the miracle of mathematics, you can pretend that the entire mass is located at a single point. This... allowed Newton to calculate the escape velocity...



E
s
c
a
p
e

v
e
l
o
c
i
t
y
=


2
M
G

/

R




{displaystyle Escape;velocity={sqrt {2MG/R}}}

... the bigger the mass [



M


{displaystyle M}

] and the smaller the radius



R


{displaystyle R}

, the larger the escape velocity.
Leonard Susskind, The Black Hole War: My Battle with Stephen Hawking to make the World Safe for Quantum Mechanics (2008)
Privacy Policy