London, United Kingdom

Chemical Engineering

Language: English Studies in English
Subject area: engineering and engineering trades
University website: www.qmul.ac.uk
Chemical Engineering
Chemical engineering is a branch of engineering that uses principles of chemistry, applied physics, life sciences (microbiology and biochemistry), applied mathematics and economics to efficiently use, produce, transform, and transport chemicals, materials and energy. A chemical engineer designs large-scale processes that convert chemicals, raw materials, living cells, microorganisms and energy into useful forms and products.
Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Engineering
Incorrigible humanity, therefore, led astray by the giant Nimrod, presumed in its heart to outdo in skill not only nature but the source of its own nature, who is God; and began to build a tower in Sennaar, which afterwards was called Babel (that is, 'confusion'). By this means human beings hoped to climb up to heaven, intending in their foolishness not to equal but to excel their creator.
Dante Alighieri, De vulgari eloquentia, Chapter VII
Engineering
A key characteristic of the engineering culture is that the individual engineer’s commitment is to technical challenge rather than to a given company. There is no intrinsic loyalty to an employer as such. An employer is good only for providing the sandbox in which to play. If there is no challenge or if resources fail to be provided, the engineer will seek employment elsewhere. In the engineering culture, people, organization, and bureaucracy are constraints to be overcome. In the ideal organization everything is automated so that people cannot screw it up. There is a joke that says it all. A plant is being managed by one man and one dog. It is the job of the man to feed the dog, and it is the job of the dog to keep the man from touching the equipment. Or, as two Boeing engineers were overheard to say during a landing at Seattle, “What a waste it is to have those people in the cockpit when the plane could land itself perfectly well.” Just as there is no loyalty to an employer, there is no loyalty to the customer. As we will see later, if trade-offs had to be made between building the next generation of “fun” computers and meeting the needs of “dumb” customers who wanted turnkey products, the engineers at DEC always opted for technological advancement and paid attention only to those customers who provided a technical challenge.
Edgar H. Schein (2010). Dec Is Dead, Long Live Dec: The Lasting Legacy of Digital Equiment Corporation. p. 60
Engineering
There are two laws discrete,
Not reconciled,—
Law for man, and law for thing;
The last builds town and fleet,
But it runs wild,
And doth the man unking.
Ralph Waldo Emerson, Ode, Inscribed to William H. Channing
Privacy Policy