Swansea, United Kingdom

Structural Metals for Gas Turbine Applications

Language: English Studies in English
Subject area: engineering and engineering trades
University website: www.swan.ac.uk
Doctor of Engineering (EngD)
Gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture would contain a variety of pure gases much like the air. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible as indicated by the constant velocity vectors in the image.
Gas Turbine
A gas turbine, also called a combustion turbine, is a type of continuous combustion, internal combustion engine. There are three main components:
Turbine
A turbine (from the Latin turbo, a vortex, related to the Greek τύρβη, tyrbē, meaning "turbulence") is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced by a turbine can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.
In June 1770, the explorer James Cook ran aground on the Great Barrier Reef in Australia and became the first European to experience the world's largest coral reef, today a paradise for scientists and holidaymakers alike. Last year, the James Cook research vessel set out to encounter unique and unexplored corals, this time in the deep ocean. Led by ERC grantee Dr Laura Robinson (University of Bristol, UK), the team on board crossed the equatorial Atlantic to take samples of deep-sea corals, reaching depths of thousands of meters. On the expedition, Dr Robinson collected samples that are shedding light on past climate changes and she will share her findings at TEDx Brussels.
Privacy Policy