Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Mechanical Engineering
Mechanical engineering is the discipline that applies engineering, physics, engineering mathematics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering disciplines.
Research
Research comprises "creative and systematic work undertaken to increase the stock of knowledge, including knowledge of humans, culture and society, and the use of this stock of knowledge to devise new applications." It is used to establish or confirm facts, reaffirm the results of previous work, solve new or existing problems, support theorems, or develop new theories. A research project may also be an expansion on past work in the field. Research projects can be used to develop further knowledge on a topic, or in the example of a school research project, they can be used to further a student's research prowess to prepare them for future jobs or reports. To test the validity of instruments, procedures, or experiments, research may replicate elements of prior projects or the project as a whole. The primary purposes of basic research (as opposed to applied research) are documentation, discovery, interpretation, or the research and development (R&D) of methods and systems for the advancement of human knowledge. Approaches to research depend on epistemologies, which vary considerably both within and between humanities and sciences. There are several forms of research: scientific, humanities, artistic, economic, social, business, marketing, practitioner research, life, technological, etc.
Mechanical Engineering
THEORY and practice principally distinguish science from arts, and accordingly most branches of knowledge pass under one or the other of these denominations; tho we must allow, that our ideas in this respect are not always sufficiently precise; for we are often at a loss in naming the branches of knowledge where speculation is joined with practice. There are rules for the operations of the mind, and others for those of the body; the latter being confined to external subjects, require no more than the assistance of the hand to perform them. Hence proceeds the distinction between the liberal and mechanic arts, and the preference given to the former, tho very unjustly in many respects. The mechanic arts depending upon manual operation, and confined to a certain beaten track, are assigned over to those whom prejudice places in a lower class: and necessity rather than taste and genius, compelling them to the exercise of these arts, the arts themselves in time became subject to contempt; whilst the free operations of the mind were claimed by others, who, because they were more exempt from indigence, possibly thought themselves more favoured by nature. But this assumed superiority of the liberal over the mechanic arts, from the former's employing only the attention of the mind, and from the difficulty of excelling therein, is sufficiently counter-balanced by the greater utility commonly arising from the latter.
Ralph Griffiths, George Edward Griffiths (1754) The Monthly Review. Vol 11. p. 490
Mechanical Engineering
To the art of mechanics is owing all sorts of instruments to work with, all engines of war, ships, bridges, mills, curious roofs and arches, stately theatres, columns, pendent galleries, and all other grand works in building. Also clocks, watches, jacks, chariots, carts and carriages, and even the wheel-barrow. Architecture, navigation, husbandry, and military affairs, owe their invention and use to this art.
William Emerson (1754/73) The Principles of Mechanics. Preface; Cited in: R.S. Woolhouse (1988) Metaphysics and Philosophy of Science in the Seventeenth and Eighteenth Centuries: Essays in Honour of Gerd Buchdahl. p. 29